Outline and References for Project: Hasse Principle for Rational Function Fields,

نویسنده

  • R. PARIMALA
چکیده

Hasse-Minkowski’s theorem asserts that a quadratic form over a number field k admits a nontrivial zero if it does over completions at all places of k. One could look for analogues of Hasse principle for function fields. Let k be a field of characteristic not 2 and Ω a set of discrete valuations of k. Let k̂v denote the completion of k at v. We say that k satisfies Hasse principle with respect to Ω if every quadratic form over k which is isotropic over k̂v for all v ∈ Ω is isotropic. We say that k satisfies weak Hasse principle with respect to Ω if every quadratic form over k which is hyperbolic over k̂v for all v ∈ Ω is hyperbolic.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Conics over function fields and the Artin-Tate conjecture

We prove that the Hasse principle for conics over function fields is a simple consequence of a provable case of the Artin-Tate conjecture for surfaces over finite fields. Hasse proved that a conic over a global field has a rational point if and only if it has points over all completions of the global field, an instance of the so-called local-global or Hasse principle. The case of the rational n...

متن کامل

Quadratic Forms over Global Fields

1. The Hasse Principle(s) For Quadratic Forms Over Global Fields 1 1.1. Reminders on global fields 1 1.2. Statement of the Hasse Principles 2 2. The Hasse Principle Over Q 3 2.1. Preliminary Results: Reciprocity and Approximation 3 2.2. n ≤ 1 6 2.3. n = 2 6 2.4. n = 3 6 2.5. n = 4 8 2.6. n ≥ 5 9 3. The Hasse Principle Over a Global Field 9 3.1. n = 2 10 3.2. n = 3 10 3.3. n = 4 11 3.4. n ≥ 5 12...

متن کامل

A Hasse Principle for Quadratic Forms over Function Fields

We describe the classical Hasse principle for the existence of nontrivial zeros for quadratic forms over number fields, namely, local zeros over all completions at places of the number field imply nontrivial zeros over the number field itself. We then go on to explain more general questions related to the Hasse principle for nontrivial zeros of quadratic forms over function fields, with referen...

متن کامل

Rational Points on Intersections of Cubic and Quadric Hypersurfaces

We investigate the Hasse principle for complete intersections cut out by a quadric and cubic hypersurface defined over the rational numbers.

متن کامل

The Hasse Principle for Pairs of Diagonal Cubic Forms

By means of the Hardy-Littlewood method, we apply a new mean value theorem for exponential sums to confirm the truth, over the rational numbers, of the Hasse principle for pairs of diagonal cubic forms in thirteen or more variables.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009